Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Mazhar Hamid, ${ }^{\text {a }}$ Matthias Zeller, ${ }^{\text {b }}$ Allen D. Hunter, ${ }^{\text {b }}$ Muhammad Mazhar ${ }^{\text {a* }}$ and Asif Ali Tahir ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and
${ }^{\mathbf{b}}$ Department of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, OH 44555-3663, USA

Correspondence e-mail:
mazhar42pk@yahoo.com

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.024$
$w R$ factor $=0.068$
Data-to-parameter ratio $=22.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Redetermination of bis(2,4-pentanedionato)palladium(II)

The crystal structure of the title compound, $\left[\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\right]$, has been redetermined at 100 K using modern equipment, resulting in improved precision compared to the previous study [Knyazeva et al. (1970). Zh. Strukt. Khim. 11, 938-939]. The new measurements reveal that the plane of the 2,4pentanedionate ligand is tilted by $3.4(1)^{\circ}$ with respect to the PdO_{4} unit $(\mathrm{Pd}$ site symmetry $=\overline{1})$. Possible reasons for this bending are examined in terms of previously undiscussed intermolecular interactions.

Comment

The single-crystal structure of the title compound, (I), was first reported by Knyazeva et al. (1970) based on film intensity data. Anisotropic refinement was not attempted for the non-H atoms. Later, Siedle et al. (1980) reported a much higher quality structure of a $1: 1$ adduct of bis(2,4-pentanedionato)palladium(II) and tetrathiofulvalene (TTF). On the basis of the Raman and X-ray data, the authors presented strong evidence that, in contrast to other complexes of TTF, this material seemed to contain only neutral tetrathiofulvalene. Nevertheless, with no good structural data for $\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}$ available at this time a small degree of charge transfer between the Pd complex and the TTF molecule could not be totally ruled out.

(I)

During our investigations into mixed metal complexes with, among others, 2,4-pentanedionate as the ligand we were able to isolate single crystals of (I) and redetermine its structure at 100 K . It was synthesized as described by Okeya et al. (1981) and single crystals were grown from a THF solution. The general findings are similar to those reported by Knyazeva et al. (1970), but the overall structure quality is significantly improved, with s.u. values for atom positions and structural parameters about a tenth of those reported previously, and the $R(F)$ value has been reduced from 0.129 to 0.026 .

Compound (I) crystallizes in the space group $P 2_{1} / n$ with two molecules in the unit cell. The Pd atom at the center of the molecule is located on an inversion center (Fig. 1), and each of the 2,4 -pentanedionate ligands is very close to planar. The largest deviation from the mean plane is 0.030 (2) \AA for atom C 3 and the r.m.s. deviation is $0.016 \AA$.

Knyazeva et al. (1970) stated that the Pd complex is planar, whereas in the isostructural copper compound (Starikova \&

Received 19 September 2005 Accepted 26 September 2005 Online 5 October 2005

Figure 1
View of the title complex, with 50% probability displacement ellipsoids for the non-H atoms [symmetry code: (i) $-x,-y,-z$].

Shugam, 1969; Lebrun et al., 1986; Berry et al., 2004) a bend of 13.6° with respect to the $\mathrm{O} \cdots \mathrm{O}$ vector is found. A closer inspection of our data, those of Knyazeva et al. and those for the copper complex do not confirm this finding. For (I), the two 2,4-pentanedionate ligands are not located exactly in the same plane but are tilted with respect to the PdO_{4} plane by $3.4(1)^{\circ}$. The separation of the two parallel 2,4-pentanedionate planes is 0.212 (2) \AA, and the Pd atom is located half way between these planes. A reanalysis of the data of Knyazeva et al. (1970) [as deposited in the Cambridge Structural Database (CSD; Version 5.26 plus three updates; Allen, 2002)] gave, within the margin of error, the same values as found here. For the isostructural copper complex, Lebrun et al. (1986) reported a value of 7.05° for the angle between the planes of the 2,4 -pentanedionate and the PdO_{4} groups, and the corresponding values for the data sets of Berry et al. (2004) (CSD refcode ACACCU02) and Starikova \& Shugam (1969) obtained from the CSD were 6.12 and 8.12°, respectively.

A closer analysis of the packing and molecular interactions for (I) and the Cu complex gives a possible explanation for the observed bending of the metallacycles. The bis(2,4-pentanedionate) complexes of palladium and copper are arranged in stacks of parallel molecules along the b axis. Each complex within those stacks is offset by half a molecule with respect to their nearest neighbor up or down the b axis, resulting in atom C 3 of each molecule coming into close contact with the Pd atom of the next molecule along the stack (Fig. 2). For (I), the $\mathrm{Pd} 1 \cdots \mathrm{C} 3^{\mathrm{j}}$ distance is $3.310(2) \AA$, and $\mathrm{Pd} 1 \cdots \mathrm{H} 3^{j}$ is $3.171 \AA$ [symmetry code (j): $x, y-1, z$; the equivalent metal-carbon distance in the copper complex is $3.017 \AA$ (Berry et al. 2004)]. Atom C3 is the most nucleophilic C atom of the 2,4pentanedionate ligand, and thus an attractive and stabilizing interaction between this carbon center and the metal cation can be proposed, formally augmenting the coordination plane of the cation to a very distorted octahedron. Such an attractive interaction would be maximized by slightly bending the ligand of the complex towards a neighboring molecule so that the $\mathrm{Pd} \cdots \mathrm{C} 3^{\mathrm{j}}$ distance is minimized, without the need to also minimize the less attractive interactions of the other atoms of the ligand.

Figure 2
Illustration of the intermolecular interactions (dotted lines) between the Pd atom and atoms C3 up and down the stacks along the b axis. The b axis is aligned along the Pd atoms displayed $[50 \%$ probability level displacement ellipsoids; symmetry codes: (i) $-x,-y,-z$; (j) $x, y-1, z$; (k) $-x,-y+1,-z]$.

This assumption seems to be further verified by comparing (I) with its 1:1 tetrathiofulvalene (TTF) adduct (Siedle et al., 1980). In the latter structure, no stacks of Pd complexes are present and also no intermolecular close contacts for the Pd atom can be found. In agreement with the above assumption, no significant bending of the metallacycle is found for the mixed crystal, and the angle between the two ligand planes is less than 1°. All these observations, together with the similar type of bending for the isostructural Cu and Pd complexes, point towards the attractive intermolecular interaction between the metal atom and the nucleophilic C atom as the main cause for the non-planarity observed for the metallocycles.

All other bond distances and angles are in the expected range, and are in good agreement with those reported previously for (I) and its adduct with tetrathiofulvalene. Selected bond lengths and angles are listed in Table 1.

Experimental

A $5 M$ solution (5 ml) of sodium hydroxide was added to a stirred mixture of 2,4-pentanedione (2.5 ml) and a 0.5 M solution $(10 \mathrm{ml})$ of disodium tetrachloropalladate(II), $\mathrm{Na}_{2}\left[\mathrm{PdCl}_{4}\right]$, to give a yellow precipitate (Okeya et al., 1981). The precipitate was filtered off, washed with water, then with methanol and finally with diethyl ether, and dissolved in a minimum amount of tetrahydrofuran to give orange crystals of (I) (yield 85%), some of which were suitable for single-crystal X-ray diffraction.

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\right]$
$M_{r}=304.61$
Monoclinic, $P 2_{1} / n$
$a=9.9119$ (10) A
$b=5.2232$ (5) \AA
$c=10.3877$ (10) \AA
$\beta=95.807(2)^{\circ}$
$V=535.03(9) \AA^{3}$
$Z=2$
> $D_{x}=1.891 \mathrm{Mg} \mathrm{m}^{-3}$
> Mo $K \alpha$ radiation
> Cell parameters from 4907 reflections
> $\theta=3.0-30.2^{\circ}$
> $\mu=1.73 \mathrm{~mm}^{-1}$
> $T=100$ (2) K
> Block, orange
> $0.60 \times 0.55 \times 0.25 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD diffractometer
ω scans
Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 2003)
$T_{\text {min }}=0.453, T_{\text {max }}=0.65$
5832 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.068$
$S=1.10$
1581 reflections
72 parameters
H-atom parameters constrained
Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Pd} 1-\mathrm{O} 2$	$1.9815(10)$	$\mathrm{Pd} 1-\mathrm{O} 1$	$1.9837(10)$
$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{O} 1$	$95.19(4)$	$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{O}^{\mathrm{i}}$	$84.81(4)$

Symmetry code: (i) $-x,-y,-z$.

All H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95-$ $0.98 \AA$) and were refined with an isotropic displacement parameter of 1.5 (methyl) or 1.2 times $U_{\text {eq }}$ of the adjacent C atom. Methyl H atoms were allowed to rotate to best fit the experimental electron density. The highest peak and deepest hole are located 0.78 and $0.75 \AA$, respectively, from atom Pd 1 .

1581 independent reflections 1457 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$
$\theta_{\text {max }}=30.2^{\circ}$
$h=-14 \rightarrow 13$
$k=-7 \rightarrow 7$
$l=-14 \rightarrow 14$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0402 P)^{2}\right. \\
\quad+0.24 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=1.23 \mathrm{e}^{-3} \\
\Delta \rho_{\min }= \\
\hline
\end{array} .1 .73 \mathrm{e}^{-3}
\end{aligned}
$$

